\qquad Date \qquad Class \qquad

Practice B

8-5 Factoring Special Products

Determine whether each trinomial is a perfect square. If so, factor it.
If not, explain why.

1. $x^{2}+6 x+9$
2. $4 x^{2}+20 x+25$
3. $36 x^{2}-24 x+16$
4. $9 x^{2}-12 x+4$
5. A rectangular fountain in the center of a shopping mall has an area of $\left(4 x^{2}+12 x+9\right) \mathrm{ft}^{2}$. The dimensions of the fountain are of the form $c x+d$, where c and d are whole numbers. Find an expression for the perimeter of the fountain. Find the perimeter when $x=2 \mathrm{ft}$.

Determine whether each binomial is the difference of two squares. If so, factor it. If not, explain why.
6. $x^{2}-16$
7. $9 b^{4}-200$
8. $1-m^{6}$
9. $36 s^{2}-4 t^{2}$
10. $x^{2} y^{2}+196$

Practice A

8-5. Factoring Special Products
Factor each perfect square trinomial by filling in the blanks

Determine whether each trinomial is a perfect square. If so, factor it.
If not, explain why.

1. $16 x^{2}+72 x+81$

$$
\text { yes; }(4 x+9)^{2}
$$

2. $x^{2}-14 x-49$
no; the last term must be positive.
3. $x^{2}-2 x+1$

$$
\text { yes; }(x-1)^{2}
$$

4. $x^{6}+16 x^{3}+64$

$$
\text { yes; }\left(x^{3}+8\right)^{2}
$$

5. The area of a rectangular frame for Ken's artwork is given by $\left(25 x^{2}-20 x+4\right) \mathrm{cm}^{2}$. The dimensions of the frame are of the form $c x+d$, where c and d are whole numbers. Find an expression for the perimeter of the
frame. Find the perimeter when $x=13 \mathrm{~cm}$.

$$
4(5 x-2) \mathrm{cm} ; 252 \mathrm{~cm}
$$

Determine whether each binomial is the difference of two squares. If so, factor it. If not, explain why.
6. $9 y^{2}-121$
yes; $(3 y+11)(3 y-11)$
7. $49-t^{6}$

$$
\text { yes; }\left(7+t^{3}\right)\left(7-t^{3}\right)
$$

8. $d^{9}-25$
d^{9} is not a perfect square.
9. $16 p^{4}-100 q^{2}$

$$
\text { yes; }\left(4 p^{2}+10 q\right)\left(4 p^{2}-10 q\right)
$$

10. $x^{4} y^{10}+324$
no; the operation between the two squares is addition.

	37	Holt Algebra 1

Practice B

Factoring Special Products

Determine whether each trinomial is a perfect square. If so, factor it.
If not, explain why.

1. $x^{2}+6 x+9$

$$
\text { yes; }(x+3)^{2}
$$

2. $4 x^{2}+20 x+25$

$$
\text { yes; }(2 x+5)^{2}
$$

3. $36 x^{2}-24 x+16$
no; $24 x \neq 2(6 x \cdot 4)$
4. $9 x^{2}-12 x+4$

$$
\text { yes; }(3 x-2)^{2}
$$

5. A rectangular fountain in the center of a shopping mall has an area of $\left(4 x^{2}+12 x+9\right) \mathrm{ft}^{2}$. The dimensions of the fountain are of the form $c x+d$, where c and d are whole numbers. Find an expression for the perimeter of the numbers. Find an expression for the perime
fountain. Find the perimeter when $x=2 \mathrm{ft}$.

$$
4(2 x+3) \mathrm{ft} ; 28 \mathrm{ft}
$$

Determine whether each binomial is the difference of two squares. If so, factor it. If not, explain why.
6. $x^{2}-16$
7. $9 b^{4}-200$
yes; $(x+4)(x-4)$ no; 200 is not a perfect square.
8. $1-m^{6}$
yes; $\left(1+m^{3}\right)\left(1-m^{3}\right)$
9. $36 s^{2}-4 t^{2}$
yes; $(6 s+2 t)(6 s-2 t)$
10. $x^{2} y^{2}+196$
no; the operation between the two squares is addition.

Reteach

8-5 Factoring Special Products

If a polynomial is a perfect square trinomial, the polynomial can be factored using a pattern.

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)^{2} \\
& a^{2}-2 a b+b^{2}=(a-b)^{2}
\end{aligned}
$$

Determine whether $4 x^{2}+20 x+25$ is a perfect square trinomial. If so, factor it. If not, explain why.
Step 1: Find a, b, then $2 a b$.

$$
\begin{array}{ll}
a=\sqrt{4 x^{2}}=2 x & \text { The first term is a perfect square. } \\
b=\sqrt{25}=5 & \text { The last term is a perfect square. } \\
2 a b=2(2 x)(5)=20 x & \text { Middle term }(20 x)=2 a b .
\end{array}
$$

Therefore, $4 x^{2}+20 x+25$ is a perfect square trinomial.
Step 2: Substitute expressions for a and b into $(a+b)^{2}$.
$(2 x+5)^{2}$
Determine whether $9 \boldsymbol{x}^{\mathbf{2}}+\mathbf{2 5 x} \boldsymbol{+} \mathbf{3 6}$ is a perfect square trinomial. If so, factor it.
If not, explain why.
Step 1: Find a, b, then $2 a b$.

$$
\begin{array}{ll}
a=\sqrt{9 x^{2}}=3 x & \text { The first term is a perfect square. } \\
b=\sqrt{36}=6 & \text { The last term is a perfect square. } \\
2 a b=2(3 x)(6)=36 x & \text { Middle term }(25 x) \neq 2 a b .
\end{array}
$$

STOP
Because $25 x$ does not equal $2 a b, 9 x^{2}-25 x+36$ is not a perfect square trinomial.
Determine whether each trinomial is a perfect square. If so, factor it.
If not, explain why.

1. $9 x^{2}+30 x+100$	2. $x^{2}-14 x+49$	3. $25 x^{2}+20 x+4$
$a=3 x$	$a=\underline{X}$	$a=\frac{5 x}{}$
$b=$	$b=\quad 7$	$b=\quad 2$
$2 a b=60 x$	$2 a b=14 x$	$2 a b=20 x$
Factor or explain: $60 x \neq 2 a b$	Factor or explain: $(x-7)^{2}$	Factor or explain: $(5 x+2)^{2}$
(Copright by Holl, Rinehart and Winston.	38	Holt Algebra 1

